I'm looking into a newer XPC API available starting with macOS 14. Although it's declared as a low-level API I can't figure it how to specify code signing requirement using XPCListener and XPCSession. How do I connect it with xpc_listener_set_peer_code_signing_requirement and xpc_connection_set_peer_code_signing_requirement which require xpc_listener_t and xpc_connection_t respectively?
Foundation XPC is declared as a high-level API and provides easy ways to specify code signing requirements on both ends of xpc.
I'm confused with all these XPC APIs and their future:
Newer really high-level XPCListener and XPCSession API (in low-level framework???)
Low-level xpc_listener_t & xpc_connection_t -like API. Is it being replaced by newer XPCListener and XPCSession?
How is it related to High-level Foundation XPC? Are NSXPCListener and NSXPCConnection going to be deprecated and replaced by XPCListener and XPCSession??
Processes & Concurrency
RSS for tagDiscover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi,
I am programming in C and would like to use Grand Central Dispatch for parallel computing (I mostly do physics based simulations). I remember there used to be example codes provided by Apple, but can't find those now. Instead I get the plain documentation. May anyone point me to the correct resources? It will be greatly appreciated. Thanks ☺.
Hi, I have some questions regarding the Background Assets Extension and DeviceCheck framework.
Goal: Ensure that only users who have purchased the app can access the server's API without any user authentication using for example DeviceCheck framework and within a Background Assets Extension.
My app relies on external assets, which I'm loading using the Background Assets Extension. I'm trying to determine if it's possible to obtain a challenge from the server and send a DeviceCheck assertion during this process within the Background Assets Extension.
So far, I only receive session-wide authentication challenges—specifically NSURLAuthenticationMethodServerTrust in the Background Assets Extensio. I’ve tested with Basic Auth (NSURLAuthenticationMethodHTTPBasic) just for experimentation, but the delegate
func backgroundDownload(
_ download: BADownload,
didReceive challenge: URLAuthenticationChallenge
) async -> (URLSession.AuthChallengeDisposition, URLCredential?)
is never called with that authentication method. It seems task-specific challenges aren't coming through at all.
Also, while the DCAppAttestService API appears to be available on macOS, DCAppAttestService.isSupported always returns false (in my testing), which suggests it's not actually supported on macOS. Can anyone confirm if that’s expected behavior?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Network
DeviceCheck
Background Assets
When I use BGContinuedProcessingTask to submit a task, my iPhone 12 immediately shows a notification banner displaying the task’s progress.
However, on my iPhone 15 Pro Max, there’s no response — the progress UI only appears in the Dynamic Island after I background the app.
Why is there a difference in behavior between these two devices?
Is it possible to control the UI so that the progress indicator only appears when the app moves to the background?
I'm specifically focused on Live Activity, but I think this is somewhat a general question. The app could get a few callbacks when:
There's a new payload (start, update, end)
There's a new token (start, update)
There's some other lifecycle event (stale, dismissed)
Assuming that the user didn't force kill the app, would the app get launched in all these scenarios?
When OS launches the app for a reason, should we wrap our tasks with beginBackgroundTask or that's unnecessary if we're expecting our tasks to finish within 30 seconds? Or the OS may sometimes be under stress and give you far less time (example 3 seconds) and if you're in slow internet, then adding beginBackgroundTask may actually come in handy?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
APNS
Background Tasks
ActivityKit
Hello!
I'm writing a System Extension that is an Endpoint Security client. And I want to Deny/Allow executing some XPC Service processes (using the ES_EVENT_TYPE_AUTH_EXEC event) depending on characteristics of a process that starts the XPC Service.
For this purpose, I need an API that could allow me to obtain an execution context of the XPC Service process. I can obtain this information using the "sudo launchctl procinfo <pid>" command (e.g. I can use the "domain = pid/3428" part of the output for this purpose). Also, I know that when the xpcproxy process is started, it gets as the arguments a service name and a pid of the process that requests the service so I can grasp the execution context from xpcproxy launching. But are these ways to obtain this info legitimate?
Hello,
In a launched agent, I need to call into a third‑party library that may occasionally hang. At present, these calls are made from a separate thread, but if the thread hangs it cannot be terminated (pthread_cancel/pthread_kill are ineffective).
Would Apple recommend isolating this functionality in a separate process that can be force‑terminated if it becomes unresponsive, or is there a preferred approach for handling such cases in launched agents?
Can I use the system call fork() in launched agent?
Thank you in advance!
I am using C APIs for XPC communication.
When my XPC server gets a xpc_dictionary as a message, I use xpc_dictionary_get_string to get the string which is of type const char*. Afterwards, when I try to free up the memory for the string, I get an error.
I could not find any details on why this happens.
Does XPC handle the lifecycle of these C strings ?
I did some tests to see the behaviour.
The following code snippet prints a string temp before and after releasing the dictionary memory.
char* string = "dummy-string";
xpc_object_t dict = xpc_dictionary_create(NULL, NULL, 0); xpc_dictionary_set_string(dict, "str", string);
const char* temp = xpc_dictionary_get_string(reply, "str");
printf("temp before release: %s\n", temp);
xpc_release(reply);
printf("temp after release: %s\n", temp);
output:
# temp before release: dummy-string
# temp after release:
I tried to free the variable temp before and after releasing dict .
char* string = "dummy-string";
xpc_object_t dict = xpc_dictionary_create(NULL, NULL, 0); xpc_dictionary_set_string(dict, "str", string);
const char* temp = xpc_dictionary_get_string(dict, "str");
printf("temp before release: %s\n", temp);
free((void *)temp); // case 1
xpc_release(dict);
// free((void *)temp); // case 2
printf("temp after release: %s\n", temp);
in both the cases i got the output:
# temp before release: dummy-string
# app(18502,0x1f02fc840) malloc: Double free of object 0x145004a20
# app(18502,0x1f02fc840) malloc: *** set a breakpoint in malloc_error_break to debug
# SIGABRT: abort
# PC=0x186953720 m=0 sigcode=0
# signal arrived during cgo execution
# ...
# ...
When using the continuation API, we're required to call resume exactly once. While withCheckedContinuation helps catch runtime issues during debugging, I'm looking for ways to catch such errors at compile time or through tools like Instruments.
Is there any tool or technique that can help enforce or detect this requirement more strictly than runtime checks? Or would creating custom abstractions around Continuation be the only option to ensure safety? Any suggestions or best practices are appreciated.
I've experimentally seen that the notifications(named:) API of NotificationCenter appears to buffer observed notifications internally. In local testing it appears to be limited to 8 messages. I've been unable to find any documentation of this fact, and the behavior seems like it could lead to software bugs if code is not expecting notifications to potentially be dropped. Is this behavior expected and documented somewhere?
Here is a sample program demonstrating the behavioral difference between the Combine and AsyncSequence-based notification observations:
@Test
nonisolated func testNotificationRace() async throws {
let testName = Notification.Name("TestNotification")
let notificationCount = 100
var observedAsyncIDs = [Int]()
var observedCombineIDs = [Int]()
let subscribe = Task { @MainActor in
print("setting up observer...")
let token = NotificationCenter.default.publisher(for: testName)
.sink { value in
let id = value.userInfo?["id"] as! Int
observedCombineIDs.append(id)
print("🚜 observed note with id: \(id)")
}
defer { extendLifetime(token) }
for await note in NotificationCenter.default.notifications(named: testName) {
let id: Int = note.userInfo?["id"] as! Int
print("🚰 observed note with id: \(id)")
observedAsyncIDs.append(id)
if id == notificationCount { break }
}
}
let post = Task { @MainActor in
for i in 1...notificationCount {
NotificationCenter.default.post(
name: testName,
object: nil,
userInfo: ["id": i]
)
}
}
_ = await (post.value, subscribe.value)
#expect(observedAsyncIDs.count == notificationCount) // 🛑 Expectation failed: (observedAsyncIDs.count → 8) == (notificationCount → 100)
#expect(observedCombineIDs == Array(1...notificationCount))
print("done")
}
Is the title possible ? I tried [[thread valueForKey:@"_private"] valueForKey:@"tid"] but the tid was not kvc compliant. private apis are alright because this is just for testing remote process thread creation. I already have a working method but it has hardcoded assembly so you can't do anything else.
this question is mainly for Quinn (figured he may know something about this)
Say I want to sync a toggle in my app with SMAppService's .status property.
If the status changes from my app I can track it. But if user toggles it from System Settings, I don't see a notification so then the UI in my app is out of date.
The status property is not key value observable and there doesn't appear to be a SMAppServiceStatusDidChangeNotification ?
I can re-read it every time my app will become active but feels kind of wrong to do it this way.
Hello Apple Developer Community,
I am developing a medical app that is classified as Class B according to FDA regulations. The app connects to a medical device using Bluetooth Low Energy (BLE) to collect critical medical data such as ECG readings. To ensure accurate data collection and maintain the quality of the medical readings, the app needs to wake up every five minutes in the background and perform tasks for approximately 30 seconds.
I understand that iOS has strict limitations on background execution to preserve battery and system performance. However, due to the medical nature of the app and the need for periodic data collection, I am seeking guidance on the following:
If I can provide documentation that the app is associated with an FDA-approved Class B medical device, would Apple allow more lenient background task execution policies?
Are there specific APIs, such as BackgroundTasks, CoreBluetooth, or other recommended strategies, that could help me achieve this behavior reliably?
Is there a process to apply for an exception or special consideration for medical apps that require periodic background activity?
Any insights or recommendations would be greatly appreciated. Thank you!
Desired Behavior
I want the app to be able to handle multiple Push-to-Start notifications even when it is completely terminated. Each Live Activity should:
Be successfully displayed upon receiving a Push-to-Start notification.
Trigger background tasks to send its update token to the server, regardless of the time interval between notifications.
Problem
I am facing an issue with iOS Live Activities when using Push-to-Start notifications to trigger Live Activities in an app that has been completely terminated. Here’s the detailed scenario:
When the app is completely terminated and I send the first Push-to-Start notification:
The Live Activity is successfully displayed.
didFinishLaunchingWithOptions` is triggered, and background tasks execute correctly, including sending the update token to the server.
When I send consecutive Push-to-Start notifications in quick succession (e.g., within a few seconds or minutes):
Both notifications successfully display their respective Live Activities.
Background tasks are executed correctly for both notifications.
However, when there is a longer interval (e.g., 10 minutes) between two Push-to-Start notifications:
The first notification works perfectly—it displays the Live Activity, triggers didFinishLaunchingWithOptions, and executes background tasks.
The second notification successfully displays the Live Activity but fails to execute any background tasks, such as sending the update token to the server.
My HypothesisI
suspect that iOS might impose a restriction where background runtime for Push-to-Start notifications can only be granted once within a certain time frame after the app has been terminated.
Any insights into why this issue might be occurring or how to ensure consistent background task execution for multiple Push-to-Start notifications would be greatly appreciated!
Hi All,
I'm working on an app that needs to connect to BLE device and on defined schedules download data from the device. the amount of data is segnificant and might take around a minute to download. we tought about utilizing both state restoration and preservation for app waking and scheduling (triggered by the ble peripheral) and BGTaskScheduler to schedule a task that will handle a long running task to manage the full data download. now, will this solution in general valid? isnt it a "hack" that goes around the 10s limit that state restoration enforces?
i know there are limitations for BGTask (like when it runs, it might be terminated by the system etc) but considering that, can we proceed with this approach without breaching apple guidelines?
thank you in advance!
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Background Tasks
Core Bluetooth
My load average on a largely idle system is around 22, going up to 70 or so periodically; SSMenuAgent seems to be consuming lots of CPU (and, looking at spindump, it certainly seems busy), but... it's not happening on any other system whose screens I am observing. (Er, I know about load average limitations, the process is also consuming 70-98% CPU according to both top and Activity Monitor.)
Since this machine (although idle) has our network extension, I'm trying to figure out if this is due to that, or of this is generally expected. Anyone?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
I've tuned my task to be decently resilient, but I found a few issues that caused it to expire regularly.
excessive CPU usage -> I'm actually running it behind ReactNative, and I found an issue where I was still updating ReactNative and thus it was keeping it alive the entire time the task was running. Removing this update helped improve stability
not updating progress frequently enough ( see https://developer.apple.com/forums/thread/809182?page=1#868247022)
My feature request is, would it be possible to get a reason the task was expired in task.expirationHandler? That would be helpful for both the user and for debugging why the task was expired. Thanks!
I'm using Swift 6 and tasks to concurrently process multiple PDF files for rendering, and it's working well.
But currently I'm manually limiting the number of simultaneous tasks to 2 out of fear that the system might run many tasks concurrently without having enough RAM to do the PDF processing.
Testing on a variety of devices, I've tried increasing the task limit and haven't seen any crashes, but I'm quite concerned about the possibility. Any given device might be using a lot of RAM at any moment, and any given PDF might strain resources more than the average PDF.
Is there a recommended technique for handling this kind of scenario?
Should I not worry about it and just go ahead and start a high number of tasks, trusting that the system won't run too many concurrently and therefore won't run out of RAM?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Hi. I'm trying to learn macOS app development. i'm trying to run unix commands:
func execute(_ command: String) throws -> String {
let process = Process()
let pipe = Pipe()
process.executableURL = URL(fileURLWithPath: "/bin/bash")
process.arguments = ["-c", command]
process.standardOutput = pipe
// process.standardError
try process.run()
process.waitUntilExit()
guard let data = try pipe.fileHandleForReading.readToEnd() else {
throw CommandError.readError
}
guard let output = String(data: data, encoding: .utf8) else {
throw CommandError.invalidData
}
process.waitUntilExit()
guard process.terminationStatus == 0 else {
throw CommandError.commandFailed(output)
}
return output
}
when try to run "pgrep" in sandbox mode ON, i get:
sysmon request failed with error: sysmond service not found error. if i turn it off it works. i don't know what to do. anyone can help me out?
SMAppService Error 108 "Unable to read plist" on macOS 15 Sequoia - Comprehensive Test Case
Summary
We have a fully notarized SMAppService implementation that consistently fails with Error 108 "Unable to
read plist" on macOS 15 Sequoia, despite meeting all documented requirements. After systematic testing
including AI-assisted analysis, we've eliminated all common causes and created a comprehensive test
case.
Error: SMAppServiceErrorDomain Code=108 "Unable to read plist: com.keypath.helperpoc.helper"
📋 Complete Repository: https://github.com/malpern/privileged_helper_help
What We've Systematically Verified ✅
Perfect bundle structure: Helper at Contents/MacOS/, plist at Contents/Library/LaunchDaemons/
Correct SMAuthorizedClients: Embedded in helper binary via CREATE_INFOPLIST_SECTION_IN_BINARY=YES
Aligned identifiers: Main app, helper, and plist all use consistent naming
Production signing: Developer ID certificates with full Apple notarization and stapling
BundleProgram paths: Tested both Contents/MacOS/helperpoc-helper and simplified helperpoc-helper
Entitlements: Tested with and without com.apple.developer.service-management.managed-by-main-app
What Makes This Different
Systematic methodology: Not a "help me debug" post - we've done comprehensive testing
Expert validation: AI analysis helped eliminate logical hypotheses
Reproduction case: Minimal project that demonstrates the issue consistently
Complete documentation: All testing steps, configurations, and results documented
Use Case Context
We're building a keyboard remapper that integrates with https://github.com/jtroo/kanata and needs
privileged daemon registration for system-wide keyboard event interception.
Key Questions
Does anyone have a working SMAppService implementation on macOS 15 Sequoia?
Are there undocumented macOS 15 requirements we're missing?
Is Error 108 a known issue with specific workarounds?
Our hypothesis: This appears to be a macOS 15 system-level issue rather than configuration error, since
our implementation meets all documented Apple requirements but fails consistently.
Has anyone encountered similar SMAppService issues on macOS 15, or can confirm a working
implementation?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Service Management
Notarization