Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

How to Ensure Controlled and Contextual Responses Using Foundation Models ?
Hi everyone, I’m currently exploring the use of Foundation models on Apple platforms to build a chatbot-style assistant within an app. While the integration part is straightforward using the new FoundationModel APIs, I’m trying to figure out how to control the assistant’s responses more tightly — particularly: Ensuring the assistant adheres to a specific tone, context, or domain (e.g. hospitality, healthcare, etc.) Preventing hallucinations or unrelated outputs Constraining responses based on app-specific rules, structured data, or recent interactions I’ve experimented with prompt, systemMessage, and few-shot examples to steer outputs, but even with carefully generated prompts, the model occasionally produces incorrect or out-of-scope responses. Additionally, when using multiple tools, I'm unsure how best to structure the setup so the model can select the correct pathway/tool and respond appropriately. Is there a recommended approach to guiding the model's decision-making when several tools or structured contexts are involved? Looking forward to hearing your thoughts or being pointed toward related WWDC sessions, Apple docs, or sample projects.
0
0
119
Jul ’25
Permanent location for CoreML models
The Core ML developer guide recommends saving reusable compiled Core ML models to a permanent location to avoid unnecessary rebuilds when creating a Core ML model instance. However, there is no location that remains consistent across app updates, since each update changes the UUID associated with the app’s resources path /var/mobile/Containers/Data/Application/<UUID>/Library/Application Support/ As a result, Core ML rebuilds models even if they are unchanged and located in the same relative directory within the app’s file structure.
0
0
550
Dec ’24
Do App Intent Domains work with Siri already?
Hi, guys. I'm writing about Apple Intelligence and I reached the point I have to explain App Intent Domains https://developer.apple.com/documentation/AppIntents/app-intent-domains but I noticed that there is a note explaining that these services are not available with Siri. I tried the example provided by Apple at https://developer.apple.com/documentation/AppIntents/making-your-app-s-functionality-available-to-siri and I can only make the intents work from the Shortcuts App, but not from Siri. Is this correct. App Intent Domains are still not available with Siri? Thanks
0
0
366
3w
ImageCreator fails with GenerationError Code=11 on Apple Intelligence-enabled device
When I ran the following code on a physical iPhone device that supports Apple Intelligence, I encountered the following error log. What does this internal error code mean? Image generation failed with NSError in a different domain: Error Domain=ImagePlaygroundInternal.ImageGeneration.GenerationError Code=11 “(null)”, returning a generic error instead let imageCreator = try await ImageCreator() let style = imageCreator.availableStyles.first ?? .animation let stream = imageCreator.images(for: [.text("cat")], style: style, limit: 1) for try await result in stream { // error: ImagePlayground.ImageCreator.Error.creationFailed _ = result.cgImage }
0
1
254
Jul ’25
App stuck “In Review” for several days after AI-policy rejection — need clarification
Hello everyone, I’m looking for guidance regarding my app review timeline, as things seem unusually delayed compared to previous submissions. My iOS app was rejected on November 19th due to AI-related policy questions. I immediately responded to the reviewer with detailed explanations covering: Model used (Gemini Flash 2.0 / 2.5 Lite) How the AI only generates neutral, non-directive reflective questions How the system prevents any diagnosis, therapy-like behavior or recommendations Crisis-handling limitations Safety safeguards at generation and UI level Internal red-team testing and results Data retention, privacy, and non-use of data for model training After sending the requested information, I resubmitted the build on November 19th at 14:40. Since then: November 20th (7:30) → Status changed to In Review. November 21st, 22nd, 23rd, 24th, 25th → No movement, still In Review. My open case on App Store Connect is still pending without updates. Because of the previous rejection, I expected a short delay, but this is now 5 days total and 3 business days with no progress, which feels longer than usual for my past submissions. I’m not sure whether: My app is in a secondary review queue due to the AI-related rejection, The reviewer is waiting for internal clarification, Or if something is stuck and needs to be escalated. I don’t want to resubmit a new build unless necessary, since that would restart the queue. Could someone from the community (or Apple, if possible) confirm whether this waiting time is normal after an AI-policy rejection? And is there anything I should do besides waiting — for example, contacting Developer Support again or requesting a follow-up? Thank you very much for your help. I appreciate any insight from others who have experienced similar delays.
0
0
628
3w
ANE Performance for on-device Foundation model
I'm running MacOs 26 Beta 5. I noticed that I can no longer achieve 100% usage on the ANE as I could before with Apple Foundations on-device model. Has Apple activated some kind of throttling or power limiting of the ANE? I cannot get above 3w or 40% usage now since upgrading. I'm on the high power energy mode. I there an API rate limit being applied? I kave a M4 Pro mini with 64 GB of memory.
0
0
321
Aug ’25
ImagePlayground: Programmatic Creation Error
Hardware: Macbook Pro M4 Nov 2024 Software: macOS Tahoe 26.0 & xcode 26.0 Apple Intelligence is activated and the Image playground macOS app works Running the following on xcode throws ImagePlayground.ImageCreator.Error.creationFailed Any suggestions on how to make this work? import Foundation import ImagePlayground Task { let creator = try await ImageCreator() guard let style = creator.availableStyles.first else { print("No styles available") exit(1) } let images = creator.images( for: [.text("A cat wearing mittens.")], style: style, limit: 1) for try await image in images { print("Generated image: \(image)") } exit(0) } RunLoop.main.run()
0
0
275
Sep ’25
Deterministic AI Safety Governor for iOS — Seeking Feedback on App Review Approach
I've built an iOS app with a novel approach to AI safety: a deterministic, pre-inference validation layer called Newton Engine. Instead of relying on the LLM to self-moderate, Newton validates every prompt BEFORE it reaches the model. It uses shape theory and semantic analysis to detect: • Corrosive frames (self-harm language patterns) • Logical contradictions (requests that undermine themselves) • Delegation attempts (asking AI to make human decisions) • Jailbreak patterns (prompt injection, role-play escapes) • Hallucination triggers (requests for fabricated citations) The system achieves a 96% adversarial catch rate across 847 test cases, with zero false positives on benign prompts. Key technical details: • Pure Swift/SwiftUI, no external dependencies • Runs entirely on-device (no server calls for validation) • Deterministic (same input always produces same output) • Auditable (full trace logging for every validation) I'm preparing to submit to the App Store and wanted to ask: Are there specific App Review guidelines I should reference for AI safety claims? Is there interest from Apple in deterministic governance layers for Apple Intelligence integration? Any recommendations for demonstrating safety compliance during review? The app is called Ada, and the engine is open source at: github.com/jaredlewiswechs/ada-newton Happy to share technical documentation or discuss the architecture with anyone interested. See: parcri.net
0
0
33
4h
[MPSGraph runWithFeeds:targetTensors:targetOperations:] randomly crash
I'm implementing an LLM with Metal Performance Shader Graph, but encountered a very strange behavior, occasionally, the model will report an error message as this: LLVM ERROR: SmallVector unable to grow. Requested capacity (9223372036854775808) is larger than maximum value for size type (4294967295) and crash, the stack backtrace screenshot is attached. Note that 5th frame is mlir::getIntValues<long long> and 6th frame is llvm::SmallVectorBase<unsigned int>::grow_pod It looks like mlir mistakenly took a 64 bit value for a 32 bit type. Unfortunately, I could not found the source code of mlir::getIntValues, maybe it's Apple's closed source fork of llvm for MPS implementation? Anyway, any opinion or suggestion on that?
0
0
183
Mar ’25
Detection of balls about 6-10ft Away not detecting
I used Yolo5-11 and while performing great detecting balls lets say 5-10ft away in 1920 resolution and even in 640 it really is taking toll on my app performance. When I use Create ML it outputs all in 415x which is probably the reason why it does not detect objects from far. What can I do to preserve some energy ? My model is used with about 1K pictures 200 each test and validate, and from close up and far.
0
2
115
Apr ’25
Pre-inference AI Safety Governor for FoundationModels (Swift, On-Device)
Hi everyone, I've been building an on-device AI safety layer called Newton Engine, designed to validate prompts before they reach FoundationModels (or any LLM). Wanted to share v1.3 and get feedback from the community. The Problem Current AI safety is post-training — baked into the model, probabilistic, not auditable. When Apple Intelligence ships with FoundationModels, developers will need a way to catch unsafe prompts before inference, with deterministic results they can log and explain. What Newton Does Newton validates every prompt pre-inference and returns: Phase (0/1/7/8/9) Shape classification Confidence score Full audit trace If validation fails, generation is blocked. If it passes (Phase 9), the prompt proceeds to the model. v1.3 Detection Categories (14 total) Jailbreak / prompt injection Corrosive self-negation ("I hate myself") Hedged corrosive ("Not saying I'm worthless, but...") Emotional dependency ("You're the only one who understands") Third-person manipulation ("If you refuse, you're proving nobody cares") Logical contradictions ("Prove truth doesn't exist") Self-referential paradox ("Prove that proof is impossible") Semantic inversion ("Explain how truth can be false") Definitional impossibility ("Square circle") Delegated agency ("Decide for me") Hallucination-risk prompts ("Cite the 2025 CDC report") Unbounded recursion ("Repeat forever") Conditional unbounded ("Until you can't") Nonsense / low semantic density Test Results 94.3% catch rate on 35 adversarial test cases (33/35 passed). Architecture User Input ↓ [ Newton ] → Validates prompt, assigns Phase ↓ Phase 9? → [ FoundationModels ] → Response Phase 1/7/8? → Blocked with explanation Key Properties Deterministic (same input → same output) Fully auditable (ValidationTrace on every prompt) On-device (no network required) Native Swift / SwiftUI String Catalog localization (EN/ES/FR) FoundationModels-ready (#if canImport) Code Sample — Validation let governor = NewtonGovernor() let result = governor.validate(prompt: userInput) if result.permitted { // Proceed to FoundationModels let session = LanguageModelSession() let response = try await session.respond(to: userInput) } else { // Handle block print("Blocked: Phase \(result.phase.rawValue) — \(result.reasoning)") print(result.trace.summary) // Full audit trace } Questions for the Community Anyone else building pre-inference validation for FoundationModels? Thoughts on the Phase system (0/1/7/8/9) vs. simple pass/fail? Interest in Shape Theory classification for prompt complexity? Best practices for integrating with LanguageModelSession? Links GitHub: https://github.com/jaredlewiswechs/ada-newton Technical overview: parcri.net Happy to share more implementation details. Looking for feedback, collaborators, and anyone else thinking about deterministic AI safety on-device.
0
0
15
8h
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
193
Oct ’25
Unwrapping LanguageModelSession.GenerationError details
Apologies if this is obvious to everyone but me... I'm using the Tahoe AI foundation models. When I get an error, I'm trying to handle it properly. I see the errors described here: https://developer.apple.com/documentation/foundationmodels/languagemodelsession/generationerror/context, as well as in the headers. But all I can figure out how to see is error.localizedDescription which doesn't give me much to go on. For example, an error's description is: The operation couldn’t be completed. (FoundationModels.LanguageModelSession.GenerationError error 2. That doesn't give me much to go on. How do I get the actual error number/enum value out of this, short of parsing that text to look for the int at the end? This one is: case guardrailViolation(LanguageModelSession.GenerationError.Context) So I'd like to know how to get from the catch for session.respond to something I can act on. I feel like it's there, but I'm missing it. Thanks!
1
0
348
Jul ’25
Difference between compiling a Model using CoreML and Swift-Transformers
Hello, I was successfully able to compile TKDKid1000/TinyLlama-1.1B-Chat-v0.3-CoreML using Core ML, and it's working well. However, I’m now trying to compile the same model using Swift Transformers. With the limited documentation available on the swift-chat and Hugging Face repositories, I’m finding it difficult to understand the correct process for compiling a model via Swift Transformers. I attempted the following approach, but I’m fairly certain it’s not the recommended or correct method. Could someone guide me on the proper way to compile and use models like TinyLlama with Swift Transformers? Any official workflow, example, or best practice would be very helpful. Thanks in advance! This is the approach I have used: import Foundation import CoreML import Tokenizers @main struct HopeApp { static func main() async { print(" Running custom decoder loop...") do { let tokenizer = try await AutoTokenizer.from(pretrained: "PY007/TinyLlama-1.1B-Chat-v0.3") var inputIds = tokenizer("this is the test of the prompt") print("🧠 Prompt token IDs:", inputIds) let model = try float16_model(configuration: .init()) let maxTokens = 30 for _ in 0..<maxTokens { let input = try MLMultiArray(shape: [1, 128], dataType: .int32) let mask = try MLMultiArray(shape: [1, 128], dataType: .int32) for i in 0..<inputIds.count { input[i] = NSNumber(value: inputIds[i]) mask[i] = 1 } for i in inputIds.count..<128 { input[i] = 0 mask[i] = 0 } let output = try model.prediction(input_ids: input, attention_mask: mask) let logits = output.logits // shape: [1, seqLen, vocabSize] let lastIndex = inputIds.count - 1 let lastLogitsStart = lastIndex * 32003 // vocab size = 32003 var nextToken = 0 var maxLogit: Float32 = -Float.greatestFiniteMagnitude for i in 0..<32003 { let logit = logits[lastLogitsStart + i].floatValue if logit > maxLogit { maxLogit = logit nextToken = i } } inputIds.append(nextToken) if nextToken == 32002 { break } let partialText = try await tokenizer.decode(tokens:inputIds) print(partialText) } } catch { print("❌ Error: \(error)") } } }
1
0
163
Jun ’25
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account?
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account? I'm trying to provide a real-time question feature for chatGPT, a logged-in extension account, while leveraging Apple Intelligence's LLM. Is there an API that also affects the extension login account?
1
0
178
Nov ’25
FoundationModels and Core Data
Hi, I have an app that uses Core Data to store user information and display it in various views. I want to know if it's possible to easily integrate this setup with FoundationModels to make it easier for the user to query and manipulate the information, and if so, how would I go about it? Can the model be pointed to the database schema file and the SQLite file sitting in the user's app group container to parse out the information needed? And/or should the NSManagedObjects be made @Generable for better output? Any guidance about this would be useful.
1
0
199
Jun ’25