Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Conditional Display of Passkey Provider in macOS \ iOS
Hello, I've developed a macOS app with an AutoFill Credential Provider extension that functions as a passkey provider. In the registration flow, I want my app to appear as a passkey provider only when specific conditions are met. Is there a way to inspect the request from the web before the passkey provider selection list is displayed to the user, determine whether my app can handle it, and then use that result to instruct the OS on whether to include my app in the passkey provider selection list? Alternatively, is there a way to predefine conditions that must be met before my app is offered as a passkey provider in the selection list? Thanks!
3
0
489
Feb ’25
Which in-app events are allowed without ATT consent?
Hi everyone, I'm developing an iOS app using the AppsFlyer SDK. I understand that starting with iOS 14.5, if a user denies the App Tracking Transparency (ATT) permission, we are not allowed to access the IDFA or perform cross-app tracking. However, I’d like to clarify which in-app events are still legally and technically safe to send when the user denies ATT permission. Specifically, I want to know: Is it acceptable to send events like onboarding_completed, paywall_viewed, subscription_started, subscribe, subscribe_price, or app_opened if they are not linked to IDFA or any form of user tracking? Would sending such internal behavioral events (used purely for SKAdNetwork performance tracking or in-app analytics) violate Apple’s privacy policy if no device identifiers are attached? Additionally, if these events are sent in fully anonymous form (i.e., not associated with IDFA, user ID, email, or any identifiable metadata), does Apple still consider this a privacy concern? In other words, can onboarding_completed, paywall_viewed, subsribe, subscribe_price, etc., be sent in anonymous format without violating ATT policies? Are there any official Apple guidelines or best practices that outline what types of events are considered compliant in the absence of ATT consent? My goal is to remain 100% compliant with Apple’s policies while still analyzing meaningful user behavior to improve the in-app experience. Any clarification or pointers to documentation would be greatly appreciated. Thanks in advance!
0
0
132
Jun ’25
Screen Not Locking with authenticate in Screensaver
I modified the system.login.screensaver rule in the authorization database to use "authenticate" instead of "use-login-window-ui" to display a custom authentication plugin view when the screensaver starts or the screen locks. However, I noticed an issue when the "Require Password after Display is Turned Off" setting is set to 5 minutes in lock screen settings: If I close my Mac’s lid and reopen it within 5 minutes, my authentication plugin view is displayed as expected. However, the screen is not in a locked state—the desktop remains accessible, and the black background that typically appears behind the lock screen is missing. This behavior differs from the default lock screen behavior, where the screen remains fully locked, and the desktop is hidden. Has anyone encountered this issue before? Is there a way to ensure the screen properly locks when using authenticate in the screensaver rule?
1
0
177
Apr ’25
App Attest development server (data-development.appattest.apple.com) returns 403 for CBOR attestation request
Hi, I’m currently implementing App Attest attestation validation on the development server. However, I’m receiving a 403 Forbidden response when I POST a CBOR-encoded payload to the following endpoint: curl -X POST -H "Content-Type: application/cbor" --data-binary @payload.cbor 'https://data-development.appattest.apple.com' Here’s how I’m generating the CBOR payload in Java: Map<String, Object> payload = new HashMap<>(); payload.put("attestation", attestationBytes); // byte[] from DCAppAttestService payload.put("clientDataHash", clientDataHash); // SHA-256 hash of the challenge (byte[]) payload.put("keyId", keyIdBytes); // Base64-decoded keyId (byte[]) payload.put("appId", TEAM_ID + "." + BUNDLE_ID); // e.g., "ABCDE12345.com.example.app" ObjectMapper cborMapper = new ObjectMapper(new CBORFactory()); byte[] cborBody = cborMapper.writeValueAsBytes(payload); I’m unsure whether the endpoint is rejecting the payload format or if the endpoint itself is incorrect for this stage. I’d appreciate clarification on the following: 1. Is https://data-development.appattest.apple.com the correct endpoint for key attestation in a development environment? 2. Should this endpoint accept CBOR-encoded payloads, or is it only for JSON-based assertion validation? 3. Is there a current official Apple documentation that lists: • the correct URLs for key attestation and assertion validation (production and development), • or any server-side example code (e.g., Java, Python) for handling attestation/validation on the backend? So far, I couldn’t find an official document that explicitly describes the expected HTTP endpoints for these operations. If there’s a newer guide or updated API reference, I’d appreciate a link. Thanks in advance for your help.
0
0
142
May ’25
How to programmatically stop passkey in my app
I am using Auth0 as a login manager for our app. The way Auth0 handles login is that their SDK will create a web view where the login is actually handled. Once the login is finished the session will end and the app will gain control. We are not set up for passkeys in their system and can't set up quickly to do that. Unfortunately with the new iOS "passkey is the primary login" way iOS is set up now, users are asked to use passkey when it's not supported on the backend. I don't have direct control of the login screens. Is there any way, at the app level, to tell the app to not use passkeys so that it quits showing up as an option for the users? I can't find any documentation on doing this. How can I stop passkey in my app entirely?
0
0
305
Feb ’25
App Groups: macOS vs iOS: Working Towards Harmony
I regularly see folks confused by the difference in behaviour of app groups between macOS and iOS. There have been substantial changes in this space recently. While much of this is now covered in the official docs (r. 92322409), I’ve updated this post to go into all the gory details. If you have questions or comments, start a new thread with the details. Put it in the App & System Services > Core OS topic area and tag it with Code Signing and Entitlements. Oh, and if your question is about app group containers, also include Files and Storage. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" App Groups: macOS vs iOS: Working Towards Harmony There are two styles of app group ID: iOS-style app group IDs start with group., for example, group.eskimo1.test. macOS-style app group IDs start with your Team ID, for example, SKMME9E2Y8.eskimo1.test. This difference has been the source of numerous weird problems over the years. Starting in Feb 2025, iOS-style app group IDs are fully supported on macOS for all product types [1]. If you’re writing new code that uses app groups, use an iOS-style app group ID. If you have existing code that uses a macOS-style app group ID, consider how you might transition to the iOS style. IMPORTANT The Feb 2025 changes aren’t tied to an OS release but rather to a Developer website update. For more on this, see Feb 2025 Changes, below. [1] If your product is a standalone executable, like a daemon or agent, wrap it in an app-like structure, as explained in Signing a daemon with a restricted entitlement. iOS-Style App Group IDs An iOS-style app group ID has the following features: It starts with the group. prefix, for example, group.eskimo1.test. You allocate it on the Developer website. This assigns the app group ID to your team. You then claim access to it by listing it in the App Groups entitlement (com.apple.security.application-groups) entitlement. That claim must be authorised by a provisioning profile [1]. The Developer website will only let you include your team’s app group IDs in your profile. For more background on provisioning profiles, see TN3125 Inside Code Signing: Provisioning Profiles. iOS-style app group IDs originated on iOS with iOS 3.0. They’ve always been supported on iOS’s child platforms (iPadOS, tvOS, visionOS, and watchOS). On the Mac: They’ve been supported by Mac Catalyst since that technology was introduced. Likewise for iOS Apps on Mac. Starting in Feb 2025, they’re supported for other Mac products. [1] Strictly speaking macOS does not require that, but if your claim is not authorised by a profile then you might run into other problems. See Entitlements-Validated Flag, below. macOS-Style App Group IDs A macOS-style app group ID has the following features: It should start with your Team ID [1], for example, SKMME9E2Y8.eskimo1.test. It can’t be explicitly allocated on the Developer website. Code that isn’t sandboxed doesn’t need to claim the app group ID in the App Groups entitlement. [2] To use an app group, claim the app group ID in the App Groups entitlement. The App Groups entitlement is not restricted on macOS, meaning that this claim doesn’t need to be authorised by a provisioning profile [3]. However, if you claim an app group ID that’s not authorised in some way, you might run into problems. More on that later in this post. If you submit an app to the Mac App Store, the submission process checks that your app group IDs make sense, that is, they either start with your Team ID (macOS style) or are assigned to your team (iOS style). [1] This is “should” because, historically, macOS has not actually required it. However, that’s now changing, with things like app group container protection. [2] This was true prior to macOS 15. It may still technically be true in macOS 15 and later, but the most important thing, access to the app group container, requires the entitlement because of app group container protection. [3] Technically it’s a validation-required entitlement, something that we’ll come back to in the Entitlements-Validated Flag section. Feb 2025 Changes On 21 Feb 2025 we rolled out a change to the Developer website that completes the support for iOS-style app group IDs on the Mac. Specifically, it’s now possible to create a Mac provisioning profile that authorises the use of an iOS-style app group ID. Note This change doesn’t affect Mac Catalyst or iOS Apps on Mac, which have always been able to use iOS-style app group IDs on the Mac. Prior to this change it was possible to use an iOS-style app group ID on the Mac but that might result in some weird behaviour. Later sections of this post describe some of those problems. Of course, that information is now only of historical interest because, if you’re using an iOS-style app group, you can and should authorise that use with a provisioning profile. We also started seeding Xcode 16.3, which has since been release. This is aware of the Developer website change, and its Signing & Capabilities editor actively encourages you to use iOS-style app groups IDs in all products. Note This Xcode behaviour is the only option for iOS and its child platforms. With Xcode 16.3, it’s now the default for macOS as well. If you have existing project, enable this behaviour using the Register App Groups build setting. Finally, we updated a number of app group documentation pages, including App Groups entitlement and Configuring app groups. Crossing the Streams In some circumstances you might need to have a single app that accesses both an iOS- and a macOS-style app group. For example: You have a macOS app. You want to migrate to an iOS-style app group ID, perhaps because you want to share an app group container with a Mac Catalyst app. But you also need to access existing content in a container identified by a macOS-style app group ID. Historically this caused problems (FB16664827) but, as of Jun 2025, this is fully supported (r. 148552377). When the Developer website generates a Mac provisioning profile for an App ID with the App Groups capability, it automatically adds TEAM_ID.* to the list of app group IDs authorised by that profile (where TEAM_ID is your Team ID). This allows the app to claim access to every iOS-style app group ID associated with the App ID and any macOS-style app group IDs for that team. This helps in two circumstances: It avoids any Mac App Store Connect submission problems, because App Store Connect can see that the app’s profile authorises its use of all the it app group IDs it claims access to. Outside of App Store — for example, when you directly distribute an app using Developer ID signing — you no longer have to rely on macOS granting implicit access to macOS-style app group IDs. Rather, such access is explicitly authorised by your profile. That ensures that your entitlements remain validated, as discussed in the Entitlements-Validated Flag, below. A Historical Interlude These different styles of app group IDs have historical roots: On iOS, third-party apps have always used provisioning profiles, and thus the App Groups entitlement is restricted just like any other entitlement. On macOS, support for app groups was introduced before macOS had general support for provisioning profiles [1], and thus the App Groups entitlement is unrestricted. The unrestricted nature of this entitlement poses two problems. The first is accidental collisions. How do you prevent folks from accidentally using an app group ID that’s in use by some other developer? On iOS this is easy: The Developer website assigns each app group ID to a specific team, which guarantees uniqueness. macOS achieved a similar result by using the Team ID as a prefix. The second problem is malicious reuse. How do you prevent a Mac app from accessing the app group containers of some other team? Again, this isn’t an issue on iOS because the App Groups entitlement is restricted. On macOS the solution was for the Mac App Store to prevent you from publishing an app that used an app group ID that’s used by another team. However, this only works for Mac App Store apps. Directly distributed apps were free to access app group containers of any other app. That was considered acceptable back when the Mac App Store was first introduced. That’s no longer the case, which is why macOS 15 introduced app group container protection. See App Group Container Protection, below. [1] I’m specifically talking about provisioning profiles for directly distributed apps, that is, apps using Developer ID signing. Entitlements-Validated Flag The fact that the App Groups entitlement is unrestricted on macOS is, when you think about it, a little odd. The purpose of entitlements is to gate access to functionality. If an entitlement isn’t restricted, it’s not much of a gate! For most unrestricted entitlements that’s not a problem. Specifically, for both the App Sandbox and Hardened Runtime entitlements, those are things you opt in to, so macOS is happy to accept the entitlement at face value. After all, if you want to cheat you can just not opt in [1]. However, this isn’t the case for the App Groups entitlement, which actually gates access to functionality. Dealing with this requires macOS to walk a fine line between security and compatibility. Part of that solution is the entitlements-validated flag. When a process runs an executable, macOS checks its entitlements. There are two categories: Restricted entitlements must be authorised by a provisioning profile. If your process runs an executable that claims a restricted entitlement that’s not authorised by a profile, the system traps. Unrestricted entitlements don’t have to be authorised by a provisioning profile; they can be used by any code at any time. However, the App Groups entitlement is a special type of unrestricted entitlement called a validation-required entitlement. If a process runs an executable that claims a validation-required entitlement and that claim is not authorised by a profile, the system allows the process to continue running but clears its entitlements-validated flag. Some subsystems gate functionality on the entitlements-validated flag. For example, the data protection keychain uses entitlements as part of its access control model, but refuses to honour those entitlements if the entitlement-validated flag has been cleared. Note If you’re curious about this flag, use the procinfo subcommand of launchctl to view it. For example: % sudo launchctl procinfo `pgrep Test20230126` … code signing info = valid … entitlements validated … If the flag has been cleared, this line will be missing from the code signing info section. Historically this was a serious problem because it prevented you from creating an app that uses both app groups and the data protection keychain [2] (r. 104859788). Fortunately that’s no longer an issue because the Developer website now lets you include the App Groups entitlement in macOS provisioning profiles. [1] From the perspective of macOS checking entitlements at runtime. There are other checks: The App Sandbox is mandatory for Mac App Store apps, but that’s checked when you upload the app to App Store Connect. Directly distributed apps must be notarised to pass Gatekeeper, and the notary service requires that all executables enable the hardened runtime. [2] See TN3137 On Mac keychain APIs and implementations for more about the data protection keychain. App Groups and the Keychain The differences described above explain a historical oddity associated with keychain access. The Sharing access to keychain items among a collection of apps article says: Application groups When you collect related apps into an application group using the App Groups entitlement, they share access to a group container, and gain the ability to message each other in certain ways. You can use app group names as keychain access group names, without adding them to the Keychain Access Groups entitlement. On iOS this makes a lot of sense: The App Groups entitlement is a restricted entitlement on iOS. The Developer website assigns each iOS-style app group ID to a specific team, which guarantees uniqueness. The required group. prefix means that these keychain access groups can’t collide with other keychain access groups, which all start with an App ID prefix (there’s also Apple-only keychain access groups that start with other prefixes, like apple). However, this didn’t work on macOS [1] because the App Groups entitlement is unrestricted there. However, with the Feb 2025 changes it should now be possible to use an iOS-style app group ID as a keychain access group on macOS. Note I say “should” because I’ve not actually tried it (-: Keep in mind that standard keychain access groups are protected the same way on all platforms, using the restricted Keychain Access Groups entitlement (keychain-access-groups). [1] Except for Mac Catalyst apps and iOS Apps on Mac. Not Entirely Unsatisfied When you launch a Mac app that uses app groups you might see this log entry: type: error time: 10:41:35.858009+0000 process: taskgated-helper subsystem: com.apple.ManagedClient category: ProvisioningProfiles message: com.example.apple-samplecode.Test92322409: Unsatisfied entitlements: com.apple.security.application-groups Note The exact format of that log entry, and the circumstances under which it’s generated, varies by platform. On macOS 13.0.1 I was able to generate it by running a sandboxed app that claims a macOS-style app group ID in the App Groups entitlement and also claims some other restricted entitlement. This looks kinda worrying and can be the source of problems. It means that the App Groups entitlement claims an entitlement that’s not authorised by a provisioning profile. On iOS this would trap, but on macOS the system allows the process to continue running. It does, however, clear the entitlements-validate flag. See Entitlements-Validated Flag for an in-depth discussion of this. The easiest way to avoid this problem is to authorise your app group ID claims with a provisioning profile. If there’s some reason you can’t do that, watch out for potential problems with: The data protection keychain — See the discussion of that in the Entitlements-Validated Flag and App Groups and the Keychain sections, both above. App group container protection — See App Group Container Protection, below. App Group Container Protection macOS 15 introduced app group container protection. To access an app group container without user intervention: Claim access to the app group by listing its ID in the App Groups entitlement. Locate the container by calling the containerURL(forSecurityApplicationGroupIdentifier:) method. Ensure that at least one of the following criteria are met: Your app is deployed via the Mac App Store (A). Or via TestFlight when running on macOS 15.1 or later (B). Or the app group ID starts with your app’s Team ID (C). Or your app’s claim to the app group is authorised by a provisioning profile embedded in the app (D) [1]. If your app doesn’t follow these rules, the system prompts the user to approve its access to the container. If granted, that consent applies only for the duration of that app instance. For more on this, see: The System Integrity Protection section of the macOS Sequoia 15 Release Notes The System Integrity Protection section of the macOS Sequoia 15.1 Release Notes WWDC 2024 Session 10123 What’s new in privacy, starting at 12:23 The above criteria mean that you rarely run into the app group authorisation prompt. If you encounter a case where that happens, feel free to start a thread here on DevForums. See the top of this post for info on the topic and tags to use. Note Prior to the Feb 2025 change, things generally worked out fine when you app was deployed but you might’ve run into problems during development. That’s no longer the case. [1] This is what allows Mac Catalyst and iOS Apps on Mac to work. Revision History 2025-08-12 Added a reference to the Register App Groups build setting. 2025-07-28 Updated the Crossing the Streams section for the Jun 2025 change. Made other minor editorial changes. 2025-04-16 Rewrote the document now that iOS-style app group IDs are fully supported on the Mac. Changed the title from App Groups: macOS vs iOS: Fight! to App Groups: macOS vs iOS: Working Towards Harmony 2025-02-25 Fixed the Xcode version number mentioned in yesterday’s update. 2025-02-24 Added a quick update about the iOS-style app group IDs on macOS issue. 2024-11-05 Further clarified app group container protection. Reworked some other sections to account for this new reality. 2024-10-29 Clarified the points in App Group Container Protection. 2024-10-23 Fleshed out the discussion of app group container protection on macOS 15. 2024-09-04 Added information about app group container protection on macOS 15. 2023-01-31 Renamed the Not Entirely Unsatisfactory section to Not Entirely Unsatisfied. Updated it to describe the real impact of that log message. 2022-12-12 First posted.
0
0
5.2k
Aug ’25
Security Resources
General: Forums topic: Privacy & Security Apple Platform Security support document Developer > Security Enabling enhanced security for your app documentation article Creating enhanced security helper extensions documentation article Security Audit Thoughts forums post Cryptography: Forums tags: Security, Apple CryptoKit Security framework documentation Apple CryptoKit framework documentation Common Crypto man pages — For the full list of pages, run: % man -k 3cc For more information about man pages, see Reading UNIX Manual Pages. On Cryptographic Key Formats forums post SecItem attributes for keys forums post CryptoCompatibility sample code Keychain: Forums tags: Security Security > Keychain Items documentation TN3137 On Mac keychain APIs and implementations SecItem Fundamentals forums post SecItem Pitfalls and Best Practices forums post Investigating hard-to-reproduce keychain problems forums post App ID Prefix Change and Keychain Access forums post Smart cards and other secure tokens: Forums tag: CryptoTokenKit CryptoTokenKit framework documentation Mac-specific resources: Forums tags: Security Foundation, Security Interface Security Foundation framework documentation Security Interface framework documentation BSD Privilege Escalation on macOS Related: Networking Resources — This covers high-level network security, including HTTPS and TLS. Network Extension Resources — This covers low-level network security, including VPN and content filters. Code Signing Resources Notarisation Resources Trusted Execution Resources — This includes Gatekeeper. App Sandbox Resources Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
3.5k
Nov ’25
Handling ITMS-91061: Missing privacy manifest
An ITMS-91061: Missing privacy manifest rejection email looks as follows: ITMS-91061: Missing privacy manifest- Your app includes "<path/to/SDK>", which includes , an SDK that was identified in the documentation as a privacy-impacting third-party SDK. Starting February 12, 2025, if a new app includes a privacy-impacting SDK, or an app update adds a new privacy-impacting SDK, the SDK must include a privacy manifest file. Please contact the provider of the SDK that includes this file to get an updated SDK version with a privacy manifest. For more details about this policy, including a list of SDKs that are required to include signatures and manifests, visit: https://developer.apple.com/support/third-party-SDK-requirements. Glossary ITMS-91061: Missing privacy manifest: An email that includes the name and path of privacy-impacting SDK(s) with no privacy manifest files in your app bundle. For more information, see https://developer.apple.com/support/third-party-SDK-requirements. : The specified privacy-impacting SDK that doesn't include a privacy manifest file. If you are the developer of the rejected app, gather the name of the SDK from the email you received from Apple, then contact the SDK's provider for an updated version that includes a valid privacy manifest. After receiving an updated version of the SDK, verify the SDK includes a valid privacy manifest file at the expected location. For more information, see Adding a privacy manifest to your app or third-party SDK. If your app includes a privacy manifest file, make sure the file only describes the privacy practices of your app. Do not add the privacy practices of the SDK to your app's privacy manifest. If the email lists multiple SDKs, repeat the above process for all of them. If you are the developer of an SDK listed in the email, publish an updated version of your SDK that includes a privacy manifest file with valid keys and values. Every privacy-impacting SDK must contain a privacy manifest file that only describes its privacy practices. To learn how to add a valid privacy manifest to your SDK, see the Additional resources section below. Additional resources Privacy manifest files Describing data use in privacy manifests Describing use of required reason API Adding a privacy manifest to your app or third-party SDK TN3182: Adding privacy tracking keys to your privacy manifest TN3183: Adding required reason API entries to your privacy manifest TN3184: Adding data collection details to your privacy manifest TN3181: Debugging an invalid privacy manifest
0
0
5.8k
Mar ’25
Authentication using MSAL library in offline mode
Hi. We are trying to get the access token before calling any API. The app can go in bad network areas but the token acquisition keeps happening for the network call. The devices are managed devices which means it has some policies installed. We are using MSAL lib for the authentication and we are investigating from that angle too but the below error seems to be coming from apple authentication which needs our attention. ========================================== LaunchServices: store (null) or url (null) was nil: Error Domain=NSOSStatusErrorDomain Code=-54 "process may not map database" UserInfo={NSDebugDescription=process may not map database, _LSLine=68, _LSFunction=_LSServer_GetServerStoreForConnectionWithCompletionHandler} Attempt to map database failed: permission was denied. This attempt will not be retried. Failed to initialize client context with error Error Domain=NSOSStatusErrorDomain Code=-54 "process may not map database" UserInfo={NSDebugDescription=process may not map database, _LSLine=68, _LSFunction=_LSServer_GetServerStoreForConnectionWithCompletionHandler} Failed to get application extension record: Error Domain=NSOSStatusErrorDomain Code=-54 "(null)" ASAuthorizationController credential request failed with error: Error Domain=com.apple.AuthenticationServices.AuthorizationError Code=1003 "(null)" ========================================== This happens mostly when we switches the network or keep the device in no or low network area. This comes sometimes when app goes in background too. Just trying to give as much as information I could. Any lead would be highly appreciated. Thank you
0
0
98
Apr ’25
Passkey Registration Fails with “UnexpectedRPIDHash” on iOS — Domain & Associated Domains Confirmed Correct
I’m implementing Passkey registration on iOS using ASAuthorizationPlatformPublicKeyCredentialProvider. On the server side, I’m using a WebAuthn library that throws the error UnexpectedRPIDHash: Unexpected RP ID hash during verifyRegistrationResponse(). Domain: pebblepath.link (publicly routable, valid SSL certificate, no warnings in Safari) Associated Domains in Xcode**: webcredentials:pebblepath.link AASA file: { "applinks": { "apps": [] }, "webcredentials": { "apps": [ "H33XH8JMV6.com.reactivex.pebblepath" ] } } Xcode Configuration: Team ID: H33XH8JMV6 Bundle ID: com.reactivex.pebblepath Associated Domains: webcredentials:pebblepath.link Logs: iOS clientDataJSON shows "origin": "https://pebblepath.link". Server logs confirm expectedOrigin = "https://pebblepath.link" and expectedRPID = "pebblepath.link". Despite this, the server library still errors out: finishRegistration error: UnexpectedRPIDHash. I’ve verified that: The domain has a valid CA-signed SSL cert (no Safari warnings). The AASA file is reachable at https://pebblepath.link/.well-known/apple-app-site-association. The app’s entitlements match H33XH8JMV6.com.reactivex.pebblepath. I’ve removed old passkeys from Settings → Passwords on the device and retried fresh. I’m testing on a real device with iOS 16+; I am using a Development provisioning profile, but that shouldn’t cause an RP ID mismatch as long as the domain is valid. Every log indicates that the domain and origin match exactly, but the WebAuthn library still throws UnexpectedRPIDHash, implying iOS is embedding a different (or unrecognized) RP ID hash in the credential. Has anyone else encountered this with iOS passkeys and a valid domain/AASA setup? Is there an extra step needed to ensure iOS recognizes the domain for passkey registration? Any guidance or insights would be greatly appreciated!
1
0
561
Jan ’25
Anti-**** Apps Need Solutions to iOS Sandbox Restrictions
Hello everyone, I’ve been working on ways to implement stricter accountability systems for personal use, especially to prevent access to NSFW content in apps like Reddit and Twitter. The main challenge is that iOS sandboxing and privacy policies block apps from monitoring or interacting with other apps on the system. While Apple’s focus on privacy is important, there’s a clear need for an opt-in exception for accountability tools. These tools could be allowed enhanced permissions under stricter oversight to help users maintain accountability and integrity without compromising safety. Here are a few ideas I’ve been thinking about: 1. Vetted Apps with Enhanced Permissions: Allow trusted applications to bypass sandbox restrictions with user consent and close monitoring by Apple. 2. Improved Parental Controls: Add options to send notifications to moderators (like accountability partners) when restrictions are bypassed or disabled. 3. Custom Keyboard or API Access: Provide a framework for limited system-wide text monitoring for specific use cases, again with user consent. If anyone has ideas for how to address this within current policies—or suggestions for advocating for more flexibility—I’d appreciate the input. I’m curious how others have handled similar challenges or if there are better approaches I haven’t considered.
0
0
503
Jan ’25
Sending emails from AWS SES to private relay service
Feedback report id: FB16605524 I'm trying to send emails to private relay service addresses using AWS SES and emails are not received. My emails are sent from dev@mydomain.fr and I've set a custom FROM domain of mail.mydomain.fr. I've added both domains and the dev@mydomain.fr adress to the "Certificates, Identifies & Profiles" section. I've set up DKIM and SPF for both. Attached a redacted version of email headers. email_headers_redacted.txt
0
0
305
Mar ’25
Fraud prevention using Device Check when publishing multiple apps
I would like to confirm about fraud prevention using Device Check when publishing multiple apps. If the Team ID and Key ID are the same, will the values be shared across all apps with Device Check? With Device Check, only two keys can be created per developer account, and these two are primarily intended for key renewal in case of a leak, rather than for assigning different keys to each app, correct? If both 1 and 2 are correct, does that mean that Device Check should not be used to manage "one-time-only rewards per device" when offering them across multiple apps? Thank you very much for your confirmation.
0
0
170
Apr ’25
Device check validation API request to apple development server failed with error code 500
Our application uses device check api to validate the device token in staging server. We are using "https://api.development.devicecheck.apple.com/v1/validate_device_token"for this.But the response is 500 internal server error. Our production build is working fine.We pointed the build to "https://api.devicecheck.apple.com/v1/validate_device_token" url.We are using the same device check key for both development and production server. Device check was working fine in development server also.Suddenly it started to failed with out making any changes in our code.
2
0
414
Mar ’25
Is “webcredentials” required for HTTPS callbacks in ASWebAuthenticationSession?
Hello, When using ASWebAuthenticationSession with an HTTPS callback URL (Universal Link), I receive the following error: Authorization error: The operation couldn't be completed. Application with identifier jp.xxxx.yyyy.dev is not associated with domain xxxx-example.go.link. Using HTTPS callbacks requires Associated Domains using the webcredentials service type for xxxx-example.go.link. I checked Apple’s official documentation but couldn’t find any clear statement that webcredentials is required when using HTTPS callbacks in ASWebAuthenticationSession. What I’d like to confirm: Is webcredentials officially required when using HTTPS as a callback URL with ASWebAuthenticationSession? If so, is there any official documentation or technical note that states this requirement? Environment iOS 18.6.2 Xcode 16.4 Any clarification or official references would be greatly appreciated. Thank you.
2
0
185
4w
Appstore submission rejected - Privacy
Please correct the following issues and upload a new binary to App Store Connect. ITMS-91061: Missing privacy manifest - Your app includes “Frameworks/FirebaseCoreDiagnostics.framework/FirebaseCoreDiagnostics”, which includes FirebaseCoreDiagnostics, an SDK that was identified in the documentation as a commonly used third-party SDK. If a new app includes a commonly used third-party SDK, or an app update adds a new commonly used third-party SDK, the SDK must include a privacy manifest file. Please contact the provider of the SDK that includes this file to get an updated SDK version with a privacy manifest. For more details about this policy, including a list of SDKs that are required to include signatures and manifests, visit: https://developer.apple.com/support/third-party-SDK-requirements. ITMS-91061: Missing privacy manifest - Your app includes “Frameworks/FBLPromises.framework/FBLPromises”, which includes FBLPromises, an SDK that was identified in the documentation as a commonly used third-party SDK. If a new app includes a commonly used third-party SDK, or an app update adds a new commonly used third-party SDK, the SDK must include a privacy manifest file. Please contact the provider of the SDK that includes this file to get an updated SDK version with a privacy manifest. For more details about this policy, including a list of SDKs that are required to include signatures and manifests, visit: https://developer.apple.com/support/third-party-SDK-requirements. ITMS-91061: Missing privacy manifest - Your app includes “Frameworks/GoogleDataTransport.framework/GoogleDataTransport”, which includes GoogleDataTransport, an SDK that was identified in the documentation as a commonly used third-party SDK. If a new app includes a commonly used third-party SDK, or an app update adds a new commonly used third-party SDK, the SDK must include a privacy manifest file. Please contact the provider of the SDK that includes this file to get an updated SDK version with a privacy manifest. For more details about this policy, including a list of SDKs that are required to include signatures and manifests, visit: https://developer.apple.com/support/third-party-SDK-requirements. our app is .NET MAUI app so we already addressed this by adding privacyinfo.xcprivacy privacy manifest under platform/ios/resources but still get flagged for this <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>NSPrivacyTracking</key> <false/> <key>NSPrivacyTrackingDomains</key> <array/> <key>NSPrivacyAccessedAPITypes</key> <array> <dict> <key>NSPrivacyAccessedAPIType</key> <string>NSPrivacyAccessedAPICategoryFileTimestamp</string> <key>NSPrivacyAccessedAPITypeReasons</key> <array> <string>C617.1</string> </array> </dict> <dict> <key>NSPrivacyAccessedAPIType</key> <string>NSPrivacyAccessedAPICategorySystemBootTime</string> <key>NSPrivacyAccessedAPITypeReasons</key> <array> <string>35F9.1</string> </array> </dict> <dict> <key>NSPrivacyAccessedAPIType</key> <string>NSPrivacyAccessedAPICategoryDiskSpace</string> <key>NSPrivacyAccessedAPITypeReasons</key> <array> <string>E174.1</string> </array> </dict> <dict> <key>NSPrivacyAccessedAPIType</key> <string>NSPrivacyAccessedAPICategoryUserDefaults</string> <key>NSPrivacyAccessedAPITypeReasons</key> <array> <string>CA92.1</string> </array> </dict> </array> <key>NSPrivacyCollectedDataTypes</key> <array/> </dict> </plist>
1
0
133
Apr ’25
Where to add the apple-app-site-association files for web-credential capability - Domain or subdomain?
I want to implement webauthn using WKWebView for my mac application. I want to host the asaa file in the rpid. Below are my site configuration - Main domain - example.com Subdomain which has the sign-in view and where webauthn kicks in - signin.example.com RPID - example.com Where shall i host the asaa file at domain(example.com) or subdomain(signin.example.com)?
3
0
1.6k
Jan ’25