General:
Forums topic: Privacy & Security
Apple Platform Security support document
Developer > Security
Enabling enhanced security for your app documentation article
Creating enhanced security helper extensions documentation article
Security Audit Thoughts forums post
Cryptography:
Forums tags: Security, Apple CryptoKit
Security framework documentation
Apple CryptoKit framework documentation
Common Crypto man pages — For the full list of pages, run:
% man -k 3cc
For more information about man pages, see Reading UNIX Manual Pages.
On Cryptographic Key Formats forums post
SecItem attributes for keys forums post
CryptoCompatibility sample code
Keychain:
Forums tags: Security
Security > Keychain Items documentation
TN3137 On Mac keychain APIs and implementations
SecItem Fundamentals forums post
SecItem Pitfalls and Best Practices forums post
Investigating hard-to-reproduce keychain problems forums post
App ID Prefix Change and Keychain Access forums post
Smart cards and other secure tokens:
Forums tag: CryptoTokenKit
CryptoTokenKit framework documentation
Mac-specific resources:
Forums tags: Security Foundation, Security Interface
Security Foundation framework documentation
Security Interface framework documentation
BSD Privilege Escalation on macOS
Related:
Networking Resources — This covers high-level network security, including HTTPS and TLS.
Network Extension Resources — This covers low-level network security, including VPN and content filters.
Code Signing Resources
Notarisation Resources
Trusted Execution Resources — This includes Gatekeeper.
App Sandbox Resources
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
General
RSS for tagPrioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
General:
Forums topic: Privacy & Security
Privacy Resources
Security Resources
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Topic:
Privacy & Security
SubTopic:
General
I'm experiencing a strange issue where ASWebAuthenticationSession works perfectly when running from Xcode (both Debug and Release), but fails on TestFlight builds.
The setup:
iOS app using ASWebAuthenticationSession for OIDC login (Keycloak)
Custom URL scheme callback (myapp://)
prefersEphemeralWebBrowserSession = false
The issue:
When using iOS Keychain autofill (with Face ID/Touch ID or normal iphone pw, that auto-submits the form) -> works perfectly
When manually typing credentials and clicking the login button -> fails with white screen
When it fails, the form POST from Keycloak back to my server (/signin-oidc) never reaches the server at all. The authentication session just shows a white screen.
Reproduced on:
Multiple devices (iPhone 15 Pro, etc.)
iOS 18.x
Xcode 16.x
Multiple TestFlight testers confirmed same behavior
What I've tried:
Clearing Safari cookies/data
prefersEphemeralWebBrowserSession = true and false
Different SameSite cookie policies on server
Verified custom URL scheme is registered and works (testing myapp://test in Safari opens the app)
Why custom URL scheme instead of Universal Links:
We couldn't get Universal Links to trigger from a js redirect (window.location.href) within ASWebAuthenticationSession. Only custom URL schemes seemed to be intercepted. If there's a way to make Universal Links work in this context, without a manual user-interaction we'd be happy to try.
iOS Keychain autofill works
The only working path is iOS Keychain autofill that requires iphone-authentication and auto-submits the form. Any manual form submission fails, but only on TestFlight - not Xcode builds.
Has anyone encountered this or know a workaround?
Hi everyone,
I'm developing an iOS app using the AppsFlyer SDK. I understand that starting with iOS 14.5, if a user denies the App Tracking Transparency (ATT) permission, we are not allowed to access the IDFA or perform cross-app tracking.
However, I’d like to clarify which in-app events are still legally and technically safe to send when the user denies ATT permission.
Specifically, I want to know:
Is it acceptable to send events like onboarding_completed, paywall_viewed, subscription_started, subscribe, subscribe_price, or app_opened if they are not linked to IDFA or any form of user tracking?
Would sending such internal behavioral events (used purely for SKAdNetwork performance tracking or in-app analytics) violate Apple’s privacy policy if no device identifiers are attached?
Additionally, if these events are sent in fully anonymous form (i.e., not associated with IDFA, user ID, email, or any identifiable metadata), does Apple still consider this a privacy concern? In other words, can onboarding_completed, paywall_viewed, subsribe, subscribe_price, etc., be sent in anonymous format without violating ATT policies?
Are there any official Apple guidelines or best practices that outline what types of events are considered compliant in the absence of ATT consent?
My goal is to remain 100% compliant with Apple’s policies while still analyzing meaningful user behavior to improve the in-app experience.
Any clarification or pointers to documentation would be greatly appreciated.
Thanks in advance!
The One-time codes documentation details how to enable autofill for SMS based codes. However, there is no details about how to correctly implement autofill for email based codes.
I am observing the email based autofill works inconsistently when using email based OTC. In my application:
There is latency of 10-15 seconds from when the email arrives to when it is available for autofill.
After the autofill feature is used, the OTC email is not being deleted from the inbox automatically.
Without documentation, it's unclear to me what I might be doing wrong that is causing these side effects.
I found an ietf proposal for how autofill with email based codes might work, but it’s unclear if this is how Apple has implemented the feature: https://www.ietf.org/archive/id/draft-wells-origin-bound-one-time-codes-00.html#name-email
Existing docs for Autofill using SMS: https://developer.apple.com/documentation/security/enabling-autofill-for-domain-bound-sms-codes
Can someone please guide me on the entire process of integrating ads in an IOS application using google's admob sdk? Not related to code but things related to Apple's privacy policy. Which options do need to select or specify in my app profile's privacy policy (identifier) section?
Hi Apple Developer Team,
I am encountering an issue with the “Sign in with Apple” feature. While implementing this functionality in my dotnet application, I noticed that the user’s first name and last name are not being returned, even though I have explicitly requested the name scope. However, the email and other requested information are returned successfully.
Here are the details of my implementation: 1. Scope Requested: name, email 2. Response Received: Email and other data are present, but fullName is missing or null. 3. Expected Behavior: I expected to receive the user’s first and last name as per the fullName scope.
I have verified the implementation and ensured that the correct scopes are being passed in the request.
Could you please help clarify the following? 1. Are there specific conditions under which Apple may not return the user’s fullName despite the scope being requested? 2. Is there a recommended approach or fallback mechanism to handle this scenario? 3. Could this behavior be related to a limitation or change in the API, or might it be an issue on my end?
I also came to know that for initial sign in the user details will be displayed in the signin-apple payload as Form data but how do I fetch those form-data from the signin-apple request, please suggest
I would greatly appreciate any guidance or solutions to resolve this issue.
Thank you for your support!
Hi,
I’m currently implementing App Attest attestation validation on the development server.
However, I’m receiving a 403 Forbidden response when I POST a CBOR-encoded payload to the following endpoint:
curl -X POST
-H "Content-Type: application/cbor"
--data-binary @payload.cbor
'https://data-development.appattest.apple.com'
Here’s how I’m generating the CBOR payload in Java:
Map<String, Object> payload = new HashMap<>();
payload.put("attestation", attestationBytes); // byte[] from DCAppAttestService
payload.put("clientDataHash", clientDataHash); // SHA-256 hash of the challenge (byte[])
payload.put("keyId", keyIdBytes); // Base64-decoded keyId (byte[])
payload.put("appId", TEAM_ID + "." + BUNDLE_ID); // e.g., "ABCDE12345.com.example.app"
ObjectMapper cborMapper = new ObjectMapper(new CBORFactory());
byte[] cborBody = cborMapper.writeValueAsBytes(payload);
I’m unsure whether the endpoint is rejecting the payload format or if the endpoint itself is incorrect for this stage.
I’d appreciate clarification on the following:
1. Is https://data-development.appattest.apple.com the correct endpoint for key attestation in a development environment?
2. Should this endpoint accept CBOR-encoded payloads, or is it only for JSON-based assertion validation?
3. Is there a current official Apple documentation that lists:
• the correct URLs for key attestation and assertion validation (production and development),
• or any server-side example code (e.g., Java, Python) for handling attestation/validation on the backend?
So far, I couldn’t find an official document that explicitly describes the expected HTTP endpoints for these operations.
If there’s a newer guide or updated API reference, I’d appreciate a link.
Thanks in advance for your help.
Hey there, I used our team's account to configure sign in with Apple, the mode is pop up, my clientId scope redirectUrl state are both correct. I got Failed to verify your identity. Try again., actually my account is valid because I can login to my mac and every apple website. I have tried many apple accounts and still got this error. That was so weird, I didn't find a solution online. Pls help me thanks.
I regularly help developers with keychain problems, both here on DevForums and for my Day Job™ in DTS. Many of these problems are caused by a fundamental misunderstanding of how the keychain works. This post is my attempt to explain that. I wrote it primarily so that Future Quinn™ can direct folks here rather than explain everything from scratch (-:
If you have questions or comments about any of this, put them in a new thread and apply the Security tag so that I see it.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
SecItem: Fundamentals
or How I Learned to Stop Worrying and Love the SecItem API
The SecItem API seems very simple. After all, it only has four function calls, how hard can it be? In reality, things are not that easy. Various factors contribute to making this API much trickier than it might seem at first glance.
This post explains the fundamental underpinnings of the keychain. For information about specific issues, see its companion post, SecItem: Pitfalls and Best Practices.
Keychain Documentation
Your basic starting point should be Keychain Items.
If your code runs on the Mac, also read TN3137 On Mac keychain APIs and implementations.
Read the doc comments in <Security/SecItem.h>. In many cases those doc comments contain critical tidbits.
When you read keychain documentation [1] and doc comments, keep in mind that statements specific to iOS typically apply to iPadOS, tvOS, and watchOS as well (r. 102786959). Also, they typically apply to macOS when you target the data protection keychain. Conversely, statements specific to macOS may not apply when you target the data protection keychain.
[1] Except TN3137, which is very clear about this (-:
Caveat Mac Developer
macOS supports two different keychain implementations: the original file-based keychain and the iOS-style data protection keychain.
IMPORTANT If you’re able to use the data protection keychain, do so. It’ll make your life easier. See the Careful With that Shim, Mac Developer section of SecItem: Pitfalls and Best Practices for more about this.
TN3137 On Mac keychain APIs and implementations explains this distinction. It also says:
The file-based keychain is on the road to deprecation.
This is talking about the implementation, not any specific API. The SecItem API can’t be deprecated because it works with both the data protection keychain and the file-based keychain. However, Apple has deprecated many APIs that are specific to the file-based keychain, for example, SecKeychainCreate.
TN3137 also notes that some programs, like launchd daemons, can’t use the file-based keychain. If you’re working on such a program then you don’t have to worry about the deprecation of these file-based keychain APIs. You’re already stuck with the file-based keychain implementation, so using a deprecated file-based keychain API doesn’t make things worse.
The Four Freedoms^H^H^H^H^H^H^H^H Functions
The SecItem API contains just four functions:
SecItemAdd(_:_:)
SecItemCopyMatching(_:_:)
SecItemUpdate(_:_:)
SecItemDelete(_:)
These directly map to standard SQL database operations:
SecItemAdd(_:_:) maps to INSERT.
SecItemCopyMatching(_:_:) maps to SELECT.
SecItemUpdate(_:_:) maps to UPDATE.
SecItemDelete(_:) maps to DELETE.
You can think of each keychain item class (generic password, certificate, and so on) as a separate SQL table within the database. The rows of that table are the individual keychain items for that class and the columns are the attributes of those items.
Note Except for the digital identity class, kSecClassIdentity, where the values are split across the certificate and key tables. See Digital Identities Aren’t Real in SecItem: Pitfalls and Best Practices.
This is not an accident. The data protection keychain is actually implemented as an SQLite database. If you’re curious about its structure, examine it on the Mac by pointing your favourite SQLite inspection tool — for example, the sqlite3 command-line tool — at the keychain database in ~/Library/Keychains/UUU/keychain-2.db, where UUU is a UUID.
WARNING Do not depend on the location and structure of this file. These have changed in the past and are likely to change again in the future. If you embed knowledge of them into a shipping product, it’s likely that your product will have binary compatibility problems at some point in the future. The only reason I’m mentioning them here is because I find it helpful to poke around in the file to get a better understanding of how the API works.
For information about which attributes are supported by each keychain item class — that is, what columns are in each table — see the Note box at the top of Item Attribute Keys and Values. Alternatively, look at the Attribute Key Constants doc comment in <Security/SecItem.h>.
Uniqueness
A critical part of the keychain model is uniqueness. How does the keychain determine if item A is the same as item B? It turns out that this is class dependent. For each keychain item class there is a set of attributes that form the uniqueness constraint for items of that class. That is, if you try to add item A where all of its attributes are the same as item B, the add fails with errSecDuplicateItem. For more information, see the errSecDuplicateItem page. It has lists of attributes that make up this uniqueness constraint, one for each class.
These uniqueness constraints are a major source of confusion, as discussed in the Queries and the Uniqueness Constraints section of SecItem: Pitfalls and Best Practices.
Parameter Blocks Understanding
The SecItem API is a classic ‘parameter block’ API. All of its inputs are dictionaries, and you have to know which properties to set in each dictionary to achieve your desired result. Likewise for when you read properties in output dictionaries.
There are five different property groups:
The item class property, kSecClass, determines the class of item you’re operating on: kSecClassGenericPassword, kSecClassCertificate, and so on.
The item attribute properties, like kSecAttrAccessGroup, map directly to keychain item attributes.
The search properties, like kSecMatchLimit, control how the system runs a query.
The return type properties, like kSecReturnAttributes, determine what values the query returns.
The value type properties, like kSecValueRef perform multiple duties, as explained below.
There are other properties that perform a variety of specific functions. For example, kSecUseDataProtectionKeychain tells macOS to use the data protection keychain instead of the file-based keychain. These properties are hard to describe in general; for the details, see the documentation for each such property.
Inputs
Each of the four SecItem functions take dictionary input parameters of the same type, CFDictionary, but these dictionaries are not the same. Different dictionaries support different property groups:
The first parameter of SecItemAdd(_:_:) is an add dictionary. It supports all property groups except the search properties.
The first parameter of SecItemCopyMatching(_:_:) is a query and return dictionary. It supports all property groups.
The first parameter of SecItemUpdate(_:_:) is a pure query dictionary. It supports all property groups except the return type properties.
Likewise for the only parameter of SecItemDelete(_:).
The second parameter of SecItemUpdate(_:_:) is an update dictionary. It supports the item attribute and value type property groups.
Outputs
Two of the SecItem functions, SecItemAdd(_:_:) and SecItemCopyMatching(_:_:), return values. These output parameters are of type CFTypeRef because the type of value you get back depends on the return type properties you supply in the input dictionary:
If you supply a single return type property, except kSecReturnAttributes, you get back a value appropriate for that return type.
If you supply multiple return type properties or kSecReturnAttributes, you get back a dictionary. This supports the item attribute and value type property groups. To get a non-attribute value from this dictionary, use the value type property that corresponds to its return type property. For example, if you set kSecReturnPersistentRef in the input dictionary, use kSecValuePersistentRef to get the persistent reference from the output dictionary.
In the single item case, the type of value you get back depends on the return type property and the keychain item class:
For kSecReturnData you get back the keychain item’s data. This makes most sense for password items, where the data holds the password. It also works for certificate items, where you get back the DER-encoded certificate. Using this for key items is kinda sketchy. If you want to export a key, called SecKeyCopyExternalRepresentation. Using this for digital identity items is nonsensical.
For kSecReturnRef you get back an object reference. This only works for keychain item classes that have an object representation, namely certificates, keys, and digital identities. You get back a SecCertificate, a SecKey, or a SecIdentity, respectively.
For kSecReturnPersistentRef you get back a data value that holds the persistent reference.
Value Type Subtleties
There are three properties in the value type property group:
kSecValueData
kSecValueRef
kSecValuePersistentRef
Their semantics vary based on the dictionary type.
For kSecValueData:
In an add dictionary, this is the value of the item to add. For example, when adding a generic password item (kSecClassGenericPassword), the value of this key is a Data value containing the password.
This is not supported in a query dictionary.
In an update dictionary, this is the new value for the item.
For kSecValueRef:
In add and query dictionaries, the system infers the class property and attribute properties from the supplied object. For example, if you supply a certificate object (SecCertificate, created using SecCertificateCreateWithData), the system will infer a kSecClass value of kSecClassCertificate and various attribute values, like kSecAttrSerialNumber, from that certificate object.
This is not supported in an update dictionary.
For kSecValuePersistentRef:
For query dictionaries, this uniquely identifies the item to operate on.
This is not supported in add and update dictionaries.
Revision History
2025-05-28 Expanded the Caveat Mac Developer section to cover some subtleties associated with the deprecation of the file-based keychain.
2023-09-12 Fixed various bugs in the revision history. Added a paragraph explaining how to determine which attributes are supported by each keychain item class.
2023-02-22 Made minor editorial changes.
2023-01-28 First posted.
Hello,
I am working on a script to update an application which bundle ID changed. Only the bundle ID was modified; all other aspects remain unchanged.
This application requires access to "Screen & System Audio Recording" permissions, which are currently granted to the old bundle ID.
The script performs the following steps:
launchctl bootout gui/$(id -u) /Library/LaunchAgents/com.my_agent_1.plist
pkgutil --forget com.my_agent_1
tccutil reset All com.my_agent_1
rm /Library/LaunchAgents/com.my_agent_1.plist
rm -rf </path/to/com_my_agent_1>
installer -dumplog -allowUntrusted -pkg </path/to/com_my_agent_2.pkg> -target /
...
When running steps #1-6 without a restart between steps #5 and #6, the old bundle ID (com.my_agent_1) remains visible in TCC.db (verified via SQL queries).
Looks like this is the reason why "com.my_agent_2" is not automatically added to the permission list (requiring manual add).
Moreover, "tccutil reset All com.my_agent_1" does not work anymore, the error:
tccutil: No such bundle identifier "com.my_agent_1": The operation couldn’t be completed. (OSStatus error -10814.)
Is there any way to completely clear the "Privacy & Security" permissions without requiring a system restart?
Thank you a lot for your help in advance!
Hi,
I know it's been discussed before, but I'm testing the Sign in with Apple feature, and I only get the user info on the first try.
Now, I know that you're supposed to go to the account settings, and look for the list of accounts that you used your Apple account to sign in with, and it used to work a few months back. But for the last few weeks I haven't been able to get the user info, even after deleting the entry from my Sign In With Apple app list.
Has there been a recent change to Apple security policy that prevents such a move from working ? Or am I doing something wrong ?
Thank you
Our product includes a background sync process that synchronizes credentials between devices. We need to update ASCredentialIdentityStore when credentials are changed, we have noticed that the ASCredentialIdentityStore.shared.saveCredentialIdentities() fails to run when the device is locked.
Is it possible to update ASCredentialIdentityStore when the device is locked?
General:
Forums topic: Privacy & Security
Forums tag: Privacy
Developer > Security — This also covers privacy topics.
App privacy details on the App Store
UIKit > Protecting the User’s Privacy documentation
Bundle Resources > Privacy manifest files documentation
TN3181 Debugging an invalid privacy manifest technote
TN3182 Adding privacy tracking keys to your privacy manifest technote
TN3183 Adding required reason API entries to your privacy manifest technote
TN3184 Adding data collection details to your privacy manifest technote
TN3179 Understanding local network privacy technote
Handling ITMS-91061: Missing privacy manifest forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
General:
Forums subtopic: Privacy & Security > General
Forums tag: App Sandbox
App Sandbox documentation
App Sandbox Design Guide documentation — This is no longer available from Apple. There’s still some info in there that isn’t covered by the current docs but, with the latest updates, it’s pretty minimal (r. 110052019). Still, if you’re curious, you can consult an old copy [1].
App Sandbox Temporary Exception Entitlements archived documentation — To better understand the role of temporary exception entitlements, see this post.
Embedding a command-line tool in a sandboxed app documentation
Discovering and diagnosing App Sandbox violations (replaces the Viewing Sandbox Violation Reports forums post)
Resolving App Sandbox Inheritance Problems forums post
The Case for Sandboxing a Directly Distributed App forums post
Implementing Script Attachment in a Sandboxed App forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] For example, this one archived by the Wayback Machine.
Hey everyone, I'm hitting a really frustrating issue with App Attest. My app was working perfectly with DCAppAttestService on October 12th, but starting October 13th it started failing with DCError Code 2 "Failed to fetch App UUID" at DCAppAttestController.m:153. The weird part is I didn't change any code - same implementation, same device, same everything.
I've tried switching between development and production entitlement modes, re-registered my device in the Developer Portal, created fresh provisioning profiles with App Attest capability, and verified that my App ID has App Attest enabled. DCAppAttestService.isSupported returns true, so the device supports it. Has anyone else run into this? This is blocking my production launch and I'm not sure if it's something on my end or an Apple infrastructure issue.
We have 2 developers:
Developer A created a Bundle ID and configured Sign in with Apple, but didn't create a corresponding App. This Bundle ID is only used for login on our official website.
Developer B created a Bundle ID, configured Sign in with Apple, and has a corresponding App.
The issue we're encountering is that because these two Bundle IDs are under different teams, when using the same Apple ID to log into these two applications, different accounts are generated. (We've tested that when creating Service IDs under the same team, logging in with Bundle IDs under the same team generates the same account.)
Since Developer A's Bundle ID doesn't have a created app, it cannot be transferred to Developer B. Therefore, we'd like to know if there's any way to make the accounts generated from logging in with the same Apple ID be identical across these two teams?
Topic:
Privacy & Security
SubTopic:
General
Tags:
Sign in with Apple REST API
Sign in with Apple
Sign in with Apple JS
Hello there,
We’re currently integrating Apple Wallet pass functionality into our application and am looking for clarification around the automatic update flow. Particularly regarding secure management of the authenticationToken.
We’ve reviewed the documentation here:
Adding a Web Service to Update Passes
authenticationToken Documentation
From our understanding:
When a user downloads a pass from our service, the .pkpass includes both a webServiceURL and an authenticationToken. Once the pass is added to Wallet, the Wallet app makes authenticated requests to our webServiceURL, using the token in the Authorization header. We then validate this token server-side to serve updates or handle device registration. So far, this flow is clear.
However, we’re looking for clarification on two key scenarios:
If a user adds the same pass twice on the same device, should the authenticationToken remain the same in both cases?
If the same user adds the same pass on a different device, should the authenticationToken also remain consistent across devices?
If the answer to both is “yes,” we assume that our backend must store the original authenticationToken in a retrievable form (not just as a hash) to regenerate the same pass for re-download or multi-device sync.
Our main question is:
What is Apple’s recommended or acceptable approach to storing authenticationToken values securely on the backend?
Should these tokens be:
Stored in plaintext (e.g. in a protected DB field)?
Encrypted using a symmetric key?
Hashed (not reversible, but limits reuse)?
We want to ensure we align with Apple’s best practices for Wallet security and token management, especially in contexts where the same pass may be installed on multiple devices or reissued later.
We're experiencing crashes in our production iOS app related to Apple's DeviceCheck framework. The crash occurs in DCAnalytics internal performance tracking, affecting some specific versions of iOS 18 (18.4.1, 18.5.0).
Crash Signature
CoreFoundation: -[__NSDictionaryM setObject:forKeyedSubscript:] + 460
DeviceCheck: -[DCAnalytics sendPerformanceForCategory:eventType:] + 236
Observed Patterns
Scenario 1 - Token Generation:
Crashed: com.appQueue
EXC_BAD_ACCESS KERN_INVALID_ADDRESS 0x0000000000000010
DeviceCheck: -[DCDevice generateTokenWithCompletionHandler:]
Thread: Background dispatch queue
Scenario 2 - Support Check:
Crashed: com.apple.main-thread
EXC_BAD_ACCESS KERN_INVALID_ADDRESS 0x0000000000000008
DeviceCheck: -[DCDevice _isSupportedReturningError:]
DeviceCheck: -[DCDevice isSupported]
Thread: Main thread
Root Cause Analysis
The DCAnalytics component within DeviceCheck attempts to insert a nil value into an NSMutableDictionary when recording performance metrics, indicating missing nil validation before dictionary operations.
Reproduction Context
Crashes occur during standard DeviceCheck API usage:
Calling DCDevice.isSupported property
Calling DCDevice.generateToken(completionHandler:) (triggered by Firebase App Check SDK)
Both operations invoke internal analytics that fail with nil insertion attempts.
Concurrency Considerations
We've implemented sequential access guards around DeviceCheck token generation to prevent race conditions, yet crashes persist. This suggests the issue likely originates within the DeviceCheck framework's internal implementation rather than concurrent access from our application code.
Note: Scenario 2 occurs through Firebase SDK's App Check integration, which internally uses DeviceCheck for attestation.
Request
Can Apple engineering confirm if this is a known issue with DeviceCheck's analytics subsystem? Is there a recommended workaround to disable DCAnalytics or ensure thread-safe DeviceCheck API usage?
Any guidance on preventing these crashes would be appreciated.
Feedback report id: FB16605524
I'm trying to send emails to private relay service addresses using AWS SES and emails are not received. My emails are sent from dev@mydomain.fr and I've set a custom FROM domain of mail.mydomain.fr. I've added both domains and the dev@mydomain.fr adress to the "Certificates, Identifies & Profiles" section. I've set up DKIM and SPF for both.
Attached a redacted version of email headers.
email_headers_redacted.txt
Hi everyone,
We are using the App Attest API to securely transition users to our new system. As part of this, we store the Key ID of the attestation key for each user to verify their identity later.
However, we’ve noticed that some users are encountering the error “DCErrorInvalidKey 3” when calling generateAssertion. Importantly, the key was previously successfully attested, and generateAssertion has worked before for these users.
Our questions:
Could this error be caused by an app or iOS update?
Is it problematic to link an attestation key's Key ID directly to a user, or are there scenarios where the key might change or become invalid?
If there’s a way to mitigate this issue or recover affected users, what best practices would you recommend?
Any help or shared experiences would be greatly appreciated! Thanks in advance.
Hi.
We are trying to get the access token before calling any API. The app can go in bad network areas but the token acquisition keeps happening for the network call. The devices are managed devices which means it has some policies installed. We are using MSAL lib for the authentication and we are investigating from that angle too but the below error seems to be coming from apple authentication which needs our attention.
==========================================
LaunchServices: store (null) or url (null) was nil: Error Domain=NSOSStatusErrorDomain Code=-54 "process may not map database" UserInfo={NSDebugDescription=process may not map database, _LSLine=68, _LSFunction=_LSServer_GetServerStoreForConnectionWithCompletionHandler}
Attempt to map database failed: permission was denied. This attempt will not be retried.
Failed to initialize client context with error Error Domain=NSOSStatusErrorDomain Code=-54 "process may not map database" UserInfo={NSDebugDescription=process may not map database, _LSLine=68, _LSFunction=_LSServer_GetServerStoreForConnectionWithCompletionHandler}
Failed to get application extension record: Error Domain=NSOSStatusErrorDomain Code=-54 "(null)"
ASAuthorizationController credential request failed with error: Error Domain=com.apple.AuthenticationServices.AuthorizationError Code=1003 "(null)"
==========================================
This happens mostly when we switches the network or keep the device in no or low network area. This comes sometimes when app goes in background too. Just trying to give as much as information I could.
Any lead would be highly appreciated. Thank you